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ABSTRACT 

A laboratory model of a pneumatic-input servovalve that operates 
without the use of moving mechanical par t s  was built and tested. Inter-  
actions of fluid streams have been used instead of moving parts.  This 
servovalve has  the output characterist ics of a four-way open-centered 
valve. The model was designed to operate with supply p re s su re  of 

5 2 5.16 x 10 N / m  
exhaust. 
44 percent flow recovery. 
resul ts ,  and suggestions for  improving performance. 

g (75 psig) a i r  and with standard atmosphere (14.7 psia) 
Tests  demonstrated a 60 percent p re s su re  recovery and a 

The report presents  design details, tes  

V 



SECTION I 

INTRODUCTION 

In comparison with typical designs of conventional servovalves, 
designs based on the fluid interaction principle offer important advantages 
in  reliability and maintenance. There are  no close-fitting, rubbing parts 
which may bind o r  operate erractically,  and i t  is possible to avoid high 
alternating s t r e s s e s  that commonly lead to fatigue failure. Thus the 
fluid interaction design is particularly attractive for implementing 
servovalves which must operate in severe environments of nuclear 
radiation, extreme temperature, intense shock, and vibration. 

The feasibility of implementing a practical  fluid interaction servo- 
valve was investigated by designing, fabricating, and testing a laboratory 
model. The resul ts  of this effort are summarized i n  Section 2. Section 
3 reviews the fluid interaction principle and descr ibes  the design of 
the model. Section 4 outlines test procedures and discusses tes t  re- 
sults. Section 5 gives conclusions and recommendations. Ear l ie r  work 
on this program w a s  presented in N A S A  quarterly reports  CR-54210 
and CR-54283, both of which a re  entitled "Design, Fabrication and Test 
of a Fluid Interaction Servovalve." This program w a s  carr ied out 
under NASA Contract Number NAS 3-5212. 
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SECTION 2 

SUMMARY 

A labora to ry - type  pneumatic s e rvova lve  us ing  e l e m e n t s  tha t  
operate on  the  in te rac t ion  of fluid (a i r )  streams w a s  des igned ,  buil t ,  
and  tested. The  se rvova lve  h a s  no moving mechan ica l  p a r t s .  The  
pneumat ic  input s igna l  is below the se rvova lve  supply p r e s s u r e  and  
less than the  p r e s s u r e  different ia l  the  se rvova lve  g e n e r a t e s .  
put c h a r a c t e r i s t i c s  a r e  s i m i l a r  to those  of a four-way open-centered-  
s e rvovalve . 

The out -  

The  se rvova lve  is made up of a power  s t age  and  a pilot  s t age .  
The  fluid in te rac t ion  e l e m e n t s  a r e  vo r t ex  dev ices  with the except ion of 
Venjet  a m p l i f i e r s  u s e d  in the  pilot s t age .  
va lve  uses two vor t ex  p r e s s u r e  a m p l i f i e r s .  
amplifiers form the output por t s  of the servovalve .  E a c h  vo r t ex  p r e s s u r e  
a m p l i f i e r  of the  power  stage is control led by a Venjet  amplifier in the  
pilot s t age .  
enc losed  in a c h a m b e r .  
function of c h a m b e r  p r e s s u r e .  
a t  a m u c h  l o w e r  p r e s s u r e  than output r e c e i v e r  p r e s s u r e  and  is con-  
trolled b y  a vo r t ex  valve tha t  r e s t r i c t s  the f low out  of the c h a m b e r .  
The  input s igna ls  to these  vortex va lves  a r e  the input s igna l  to the 
se rvova lve .  The  Venjet  in conjunction with the  vo r t ex  va lves  a l lows  a 
low p r e s s u r e  input s igna l  to control  a h igher  leve l  of output p r e s s u r e .  

The  power s t a g e  of the  s e r v o -  
The  r e c e i v e r s  of these  

The  Venjet  ampl i f i e r  c o n s i s t s  of a nozz le  and  r e c e i v e r  
The r e c e i v e r  output p r e s s u r e  and  flow v a r y  as 

The  c h a m b e r  p r e s s u r e  of the Venjet  is 

Table  2- 1 s u m m a r i z e s  significant p e r f o r m a n c e  c h a r a c t e r i s t i c s  
and  compares t h e m  with des ign  spec i f ica t ions .  C h a r a c t e r i s t i c s  s u c h  as 
th re sho ld ,  s y m m e t r y ,  and  h y s t e r e s i s  w e r e  also eva lua ted  and  w e r e  as 
specif ied and  comparable to a conventional s e rvova lve .  The  se rvova lve  
c h a r a c t e r i s t i c  p re s su re - f low c u r v e s  w e r e  somewha t  better than  a s t r a i g h t  
l ine.  The  input power ,  flow recovery ,  and  the  quiescent  supply flow did 
not m e e t  specified va lues ,  but  these  c h a r a c t e r i s t i c s  c a n  be improved  to 
more nea r ly  meet the specif ied va lues  by merely opt imiz ing  the  sizes of 
the  pilot and  power  s t a g e s .  The c h a r a c t e r i s t i c s  r equ i r ing  more re f ine -  
m e n t  are l inear i ty  and  output noise.  

The  p e r f o r m a n c e  c h a r a c t e r i s t i c s  achieved  with the l abora to ry  model  
of fluid in te rac t ion  servovalve d e m o n s t r a t e s  the feasibility of this type 
servovalve. 
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Table 2- 1 - Summary of Significant Performance Character is t ic  

IT EM 

I 1. Supply P r e s s u r e  

2. P r e s s u r e  Recovery  

3. Rated No-Load Output Flow 

4. Flow Recovery  

5. Quiescent Supply Flow 

6. Input Signal P r e s s u r e  

7. Input Signal Bias P r e s s u r e  

8 .  Input Signal Power  

9. Different ia l  Input Signal 
Power  Change f o r  Output 
P r e s s u r e  Change F r o m  
-0.69 x lo5  N / m 2  to  

( - 1 0  to  +IO psi)  
+0.69 105 N / ~ Z  

Gain Max 
Gain Min 

10. Linea r i ty  

11. Output Stabil i ty 

12. Trans ien t  Response  

SPECIFIED 

5 2 5.16 x 10 N/m g a i r  
(75 psig) 

(45 Psi) 

0.0113 K g / s e c  
(0.025 pps)  

0.55 min 

0.0204 Kg/sec  m a x  
(0.045 pps)  

2.75 x lo5 N/m 

2 
3.1 x lo5 N / m  g min  

2 
g m a x  

(40 Psig) 

(20 psig) 

2 1.38 x lo5 N / m  g m a x  

30 watts m a x  

5 watts m a x  

3 

0.034 x l o 5  N / m 2  m a x  
( 0 . 5  psi) 

0.25 sec 

MEASURED 

5 2 
5.16 x 10 N/m g a i r  

3.1 x l o 5  N/m 
(45 ps i )  

0.0131 K g / s e c  
(0.029 pps) 

(75 PSif3) 
2 

0.44 

0.030 Kg/sec  
(0.067 pps) 

1.72 x IO5 N / m  g 
(25 p a i d  

1.17 x IO5 N/m g 
(17 ps i&)  

2 

2 

55 watts  

5 watts  

15 

0.27 lo5  ~ / m ~  
(4 p s i )  

0.10 s e c  
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SECTION 3 

DESCRIPTION OF SERVOVALVE 

The fluid-interaction servovalve is a pneumatic input, four-way 
open centered valve consisting of a pilot stage and a power stage. A 
schematic,  assembly drawing, and photograph of the servovalve a r e  
shown in Figures  3-1, 3-2, and 3-3, respectively. 

The pilot stage amplifies the input signal and r a i se s  the pressure  
level to a level compatible with the power stage. The power stage has 
pressure  -flow characterist ics similar to that of the conventional four - 
way bridge, spool type valve. The fluid interaction devices used to 

P 
Pc - INPUT SIGNAL PRESSURE 

Ps - SUPPLY PRESSURE 
PE - EXHAUST PRESSURE 

P 

VORTEX 
VALVE 

U P-2959 

Figure 3-1 - Schematic of Fluid Interaction Servovalve 
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I 

Figure 3-3 - Fluid Interaction Pneumatic Servovalve 

implement the servovalve a r e  the vortex valve, vortex pressure  ampli- 
f i e r ,  and Venjet amplifier. 
pilot and power stage follow. 

Descriptions of these devices and of the 

3.1 FLUID INTERACTION DEVICES 

3.1.1 Vortex Valve 

The basic vortex valve consists of a cylindrical chamber 
with supply flow and control flow inlets and an outlet orifice as i l lus- 
t ra ted in Figure 3-4. The supply flow of gas  en ters  the chamber and, 
in the absence of control flow as indicated in Figure 3-4(a), proceeds 
radially inward without resistance and then flows out of the outlet 
orifice. In the absence of control flow the maximum total flow through 
the valve is achieved, with the main p res su re  drop occurring across  
the outlet orifice. 
supply pressure.  Control flow, caused by the control pressure  being 

The chamber pressure  is slightly less  than the 
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above the chamber pressure,  is injected tangentially into the chamber, 
as shown in Figure 3-4(b). The tangential control flow imparts a rota- 
tional component to the supply flow. The combined flow has both a 
tangential and a radial component. The conservation of momentum r e -  
qu i res  that the tangential velocity and the angular velocity both increase 
as the flow moves inward. 
tion resul ts  in a radial  pressure gradient. F o r  a constant supply p re s -  
sure, this drop in pressure across  the c h d e r  reduces the pressure 
differential ac ross  the outlet orifice, and thus reduces the outlet flow. 

The centrifugal force due to the fluid rota- 

The vortex valve used in this particular application has 
two outlet orifices on opposite sides of the vortex chamber,  a s  shown 
in Figure 3-5. The ratio between maximum and minimum output flow 
of a dual exit valve i s  70 to 90 percent higher than a single exit valve. 
The normalized performance characterist ics of a dual exit valve of 

SUPPLY FLOW CONTROLFLOW YPPLY \ 

VoRiEX 
CHAMBER ORIFICE d 

\OUTLET 
ORIFICE .. 

f (a) NO CONTROL FLOW (b) WITH CONTROL FLOW 

Figure 3-4 - Vortex Valve 

CONTROL ORIFICE, pc',wc p5*,ws 7 BUTTON 

Figure 3-5  - Dual Exit Vortex Valye 
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approximately the same size as that used in the servovalve a r e  shown 
in Figure 3-6. 

3.1.2 Vortex P res su re  Amplifier 

A vortex pressure amplifier is s imilar  to a vortex valve 
with the exception that a pickoff o r  receiver  i s  placed in the gas s t r eam 
of the outlet orifice; the pickoff ac t s  in much the same manner as a 
pitot tube. The receiver pressure and flow is the output of the device. 
When there i s  no control flow, the flow out of the outlet orifice is di-  
rected into the receiver ,  Figure 3-7(a),  and the pressure  and flow r e -  
covered under the condition i s  at a maximum. As control flow is added, 
the exit flow fans out as shown in Figure 3-7(b) and the recovered p r e s -  
su re  decreases .  Hence, the vortex pressure  amplifier uses  the combined 
effects of the vortex valve and flow diversion for  obtaining amplification. 

3.1.3 Veniet Arndifier 

The Venjet amplifier consists of a nozzle and receiver 
enclosed in a chamber, as illustrated in the schematic of Figure 3-8. 
The receiver  output pressure  and flow vary as functions of the chamber 
p re s su re ,  as shown in Figure 3-9. 

In the tes t  f rom which this data w a s  derived, the Venjet 
supply pressure  was 5.16 x 10 5 N!m2g (75 psig). The receiver load 
was the control port of the vortex pressure  amplifiers used in the 
servovalve power stage. The supply pressure  to this power stage 
element was held constant a t  3.44 x l o 5  N / m  g (50 psig). 
p ressure  of the Venjet was Controlled by restricting the flow out of the 
chamber with a hand valve. 

2 The chamber 

The Venjet enables a high output pressure  to be controlled 
by a low vent pressure ,  which, in turn,  can be easi ly  controlled with a 
vortex valve. 
slightly above that of the vent pressure .  The Venjet is therefore well 
suited for  controlling the high control pressure  of the power stage 
vortex devices. 

The control pressure of the vortex valve need be only 

3.2 PILOT STAGE 

The pilot stage consists of two Venjets controlled by dual exit 
vortex valves. One Venjet and vortex valve combination is shown in 
Figure 3-10. 
N/m2g (75 psig) supply to the servovalve. 

The supply pressure to the Venjet is the 5.16 x lo5  
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SUPPLY 
FLOW 

NOZZLE 

OUTPUT 
FLCm 

VENJET AMPLIFIER’ 

-3034 
t 

VENT FLOW 

Figure 3 - 8  - Schematic of Venjet Amplifier 

VENT PRESSURE (PSIG) 

Figure 3-9  - Output P r e s s u r e  V s .  Vent P r e s s u r e  of Pilot Stage Venjet 
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The output of the Venjet i s  the control signal to one of the power 
stage vortex pressure amplif iers ,  and the flow out of the Venjet chamber 
(vent flow) is controlled by a dual exit vortex valve that acts as a var i -  
able restriction. 
of the input signals to the servovalve. 

The control flow to the dual exit vortex valve is one 

The effective orifice size of the vortex valve is a function of the 

The control signal to the vortex 
p res su re  differential between the Venjet chamber pressure  and the 
control input signal to the servovalve. 
valve need only be slightly higher than the chamber pressure  to res t r ic t  
the chamber vent flow. The operation of the dual exit vortex valve in 
combination with the Venjet is illustrated graphically in Figure 3 - 11. 
In this figure the valve characterist ics of Figure 3-6 a r e  shown with a 
load line along which the valve would operate when used in combination 
with a Venjet. The Venjet chamber pressure  is the supply pressure  of 
the vortex valve, and the valve supply flow i s  the vent flow of the Venjet. 
As the control input pressure  to the vortex valve increases ,  the vent 
flow f rom the Venjet chamber decreases and the Venjet chamber p re s -  
sure  increases ,  causing the Venjet receiver  pressure  and flow to increase.  

In this application the ratio between the Venjet chamber pressure  
and the Venjet supply pressure  is always l e s s  than the cr i t ical  p ressure  
ratio,  and the Venjet supply pressure is constant. Therefore the Venjet 
supply flow is constant, 

The significant dimensions of the pilot stage components a r e  as 
follows: 

Venie t Valve 

Nozzle diameter 
Receiver diameter 
Nozzle to receiver 

spacing 

0.249 cm (0.098 in.) 
0.249 cm (0.098 in.) 

0.262 cm (0.103 in.) 

Vortex Valve 

Vortex chamber diameter 
Vortex chamber length 
Vortex chamber outlet (0.450 cm (0.177 in.) (button side) 

Button diameter 
Control orifice diameter 

2.54 cm (1.00 in.) 
0.369 cm (0.156 in.) 

[ (0.457 cm (0.180 in.) (opposite side) 3 
2.22 cm (0.877 in.) 
0.140 crn (0.055 in.) 

diameter 

(Single Orifice) 
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3 . 3  POWER STAGE 

I The power stage, shown schematically in Figure 3-12,is composed 
I 

of two vortex pressure  amplifiers which a r e  operated in push-pull and 
produce a pressure  flow characterist ic s imilar  to the conventional four - 

c 1  way bridge, spool type servovalve. An increase of control pressure  P 
diver ts  the flow leaving the output orifice of valve V1 and thereby r e -  
duces the recovered pressure  Pi. A simultaneous reduction of Pc2 
converges the flow leaving V2 to increase P2.  The resu l t  is a differ- 
ent ia l  p ressure  P2 - P1 across  the load. 

When the two valves are operated to drive an actuator load, i t  
is necessary for  one valve to absorb reverse  flow f rom the actuator 
when the load i s  moving. The vortex amplifier receiver  i s  designed to 
provide this type of operation. With the outlet flow at a minimum value 
and fully diverted to exhaust, the backflow is exhausted with minimum 
back pressure  by providing sufficient a r e a  between the valve and 
r e  ce ive r . 

An orifice in the supply line to the power stage drops the p re s -  
sure  f rom 5.16 N/m2g (75 psig) to about 3.58  x l o 5  N/m2g (52 psig). 
The quiescent control p re s su res  to the power stage a r e  se t  at a value 
that resul ts  in a quiescent supply flow to each vortex p res su re  amplifier 
equal to one-half of the maximum supply flow to the power stage. When 

4 ORIFICE 

I v2 

BUTTON 

ORIFICE 

RECEIVER/ I , , p2 I 
LOAD 

P-2959 

Figure 3-12 - Schematic of Power Stage of Fluid Interaction Servovalve 
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the control pressures  a r e  varied about the quiescent condition by an 
input signal to the valve, one control pressure  to the power stage in- 
c reases  and the other decreases .  This change in control pressures  
resul ts  in an increase in supply flow to one vortex pressure amplifier 
and a decrease in the supply flow to the other. 
each vortex pressure  amplifier is almost independent of the receiver  
load or output flow. Thus the supply flow to the power stage and con- 
sequently the supply pressure,  which is the drop through the orifice,  
remain relatively constant. 

Also, the supply flow to 

The pressure  -flow characterist ics of the vortex amplifier a r e  
The forward flow curve indicates the pressure  shown in Figure 3-13. 

flow characterist ic in  the receiver -to-load direction with no control 
flow in the vortex chamber. The reverse  f low curve i l lustrates the 
pressure  -flow characterist ic in the load-to-receiver direction with 
maximum control flow to the vortex chamber.  
used to determine the load pressure -flow characterist ics of the power 
stage with a variable orifice load. 
termined by the point of intersection of the curves.  The differential 
load pressure at a given load weight flow is found by subtracting the 
corresponding pressures .  This procedure was performed graphically, 
and the resulting load pressure -flow characterist ic is shown in 
Figure 3-14. 

The two curves can be 

The maximum no-load flow is de-  

The data in Figure 3 - 1 3  was taken with a supply pressure  of 
3.44 x l o 5  N/mZg (50 psig). 

maximum no-load flow recovery i s  0.69 of the total flow. 
of maximum control weight flow to load weight flow i s  0.26. 

The maximum blocked load pressure  r e -  
covery is 3.24 x 10 5 N / m 2  (47 psi) o r  0.94 of supply pressure ;  the 

The ratio 

The significant dimensions of the vortex amplifier a r e  a s  follows: 

Vortex chamber diameter 
Vortex chamber length 
Control orifice diameter 

Vortex chamber outlet 

Button diameter 
Vortex chamber outlet to 

Receiver orifice diameter 

3.300 cm (1.300 in.) 
0.236 cm (0.093 in.) 

(five orifices) 0.119 cm (0.047 in.) 

orifice diameter  0.470 cm (0.185 in.) 
3.060 cm (1.207 in.) 

0.165 cm (0.065 in.) 
0.493 cm (0.194 in.) 

receiver length 
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SEC TION 4 

SERVOVALVE ACCEPTANCE TEST 

4.1 TEST OBJECTIVE 

The objective of the acceptance test was to establish the con- 
formance of the fluid interaction servovalve performance to that 
specified. The servovalve specifications a r e  listed in Appendix A. 

4 .2  TEST EQUIPMENT 

The t rans  ient r e s  pons e ,  threshold, output stability , hyste re s is, 
and symmetry tests were conducted using the tes t  setup shown sche-  
matically in Figure 4-1.  A Bendix Model Number 356, four-way, closed 
center ,  electropneumatic servovalve was used to vary the input control 
p re s su res .  The electropneumatic servovalve was controlled by a se rvo  
amplifier,  and the input signal was var ied ei ther  manually o r  by a func- 
tion generator.  
interaction servovalve were  measured by means of differential p re s su re  
t ransducers .  
photographing the oscilloscope t race .  
calibrated using a mas te r  pressure  gauge. A calibration check of the 
m a s t e r  p re s su re  gauge with a dead weight t e s t e r  showed the gauge to be 
accurate  within -+O. 5 percent.  

The differential output and input p re s su res  to the fluid 

The p res su res  w e r e  recorded on the X-Y plotter o r  by 
The p res su re  t ransducers  were  

Tests  of input admittance, of input signal p re s su re  and flow versus  
differential output p re s su re ,  and of output flow versus  differential output 
p re s su re  were  conducted using the tes t  setup a s  shown in F igure  4-2. 
F o r  these tests, rotameters  were used to measure  input, control, and 
load flows, and p res su re  gauges were  used to measure  p re s su res .  
Figure 4-3 shows a photograph of the tes t  setup. 

The load volumes used in the stability tes t s  w e r e  measured by 
filling them with a measured quantity of water .  
all found to be about 4.9 cm3 ( 0 . 3  in?) l a r g e r  than the calculated o r  
nominal value. The specified filter k0.05s t 1) 2)for filtering the differ-  

entia1 output p re s su re  of the valve in the stability tests was checked by 
measuring the output versus  frequency with a scope and function gener-  
a tor .  

The load volumes were  

The amplitude ratio versus frequency is shown in Figure 4-4 
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Figure 4-3 - Photograph of Servovalve Test  Setup 
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Figure 4-4 - Frequency Response of Fi l tered P r e s s u r e  Transducer 
Output Circuit used in Stability Test 

4- 3 



4.3 DETAILED TEST PROCEDURE 

F o r  all tes ts ,  the supply pressure to the servovalve w a s  set at 
5.16 x l o 5  N / m 2  g (75  psig). 

4.3.1 Transient Response 

The transient response of the valve was established by 
introducing a s tep input signal into the valve which resulted in a 0.69 x 
l o 5  N / m 2  (10 psi) change in the differential output pressure ,  and by 
recording both the input and output pressures  as a function of time. 

Detailed Procedure 

(a) 

(b)  

( c )  

Set up equipment as  shown in Figure 4-1.  

Set sweep time of the oscilloscope at 0.1 s e c / c m .  

Set vertical  sensitivity of the oscilloscope to 
0.172 x l o 5  N/rn2/cm (2 .5  ps i /cm)  for both 
input and output pressures .  

(d)  Apply s tep input signal at 1 cps with 0.69 x 10 5 
N / m 2  (10 psi) change in differential output 
pressure .  Close load throttle. 

Photograph simuitaneous t races  of differential 
input signal (PcA - PcB) and differential output 
signal (P1 - P2). 

( e )  

4 . 3 . 2  Threshold 

The threshold of the valve w a s  established by recording 

The input signal amplitude was gradually decreased 
the input and output differential pressures  as a function of time with a 
sine wave input. 
until the output no longer followed the input. 

Detailed P roc edu re 

(a) 

(b)  Place the 

Set sweep time of the oscilloscope at 1 sec / cm.  
1 

(0.05s t 1)' 
filter in output p re s su re  circuit. 



( c )  Set vertical  sensitivity of scope to  0.086 x 10 5 
N / m  2 / c m  (1.25 ps i /cm)  for  both input and output 

pressures .  

(d)  Photograph simultaneous t r aces  of differential 
input signal (PcA - PcB) and differential output 
signal (P1 - P2) with smallest discernible regular 
movement of output t race.  

4 . 3 . 3  Output Stability 

The output stability was measured by recording the output 
differential p re s su re  versus  time with a constant input signal. 
t es t  was performed with closed load throttle and with various combina- 
tions of load volume s izes  and input signals I 
were:  (1 )  V1 equal to  139 cm3 (8.5 in3), V2 equal to 24.6 crn3 (1.5 in3); 
(2)  V1 and V 
(1 .5  in3, V2 equal to 139 cm3 (8.5 in3). 

This 

The load volumes used 

equal to 82 cm3  ( 5  in3); and ( 3 )  V1 equal to 24.6 cm3 2 

Detailed Procedure 

(a) 

(b) 

Set sweep time of scope at 0.2 sec / cm.  

Set vertical  sensitivity of scope to 0.086 x l o 5  
N / m 2 / c m  (1.25 ps i /cm)  for  the output differ- 
ential p ressure .  

( c )  Leave load throttle closed. Set V 1 = V 2  = 82 c m  3 ( 5 in 3 ) .  

(d) Photograph t race of differential output signal with 
input signal set  such that (P1 - P2) equals 0,  
*1.03 x l o 5  N / m 2 ,  *2.06 x l o 5  N / m 2 ,  and 
+ 3 . 1  x l o 5  N / m 2  ( 0 ,  *15, *30 ,  and *45 psi) .  

Adjust load volumes such that V1 = 139 cm3 (8 .5  in3) 
and V 2  - 24.6 cm3 (1.5 in3). 

Photograph t race of differential oE:put signal with 
input signal set  such that ( P I  - Pz)  equals 0, and 
*1.03 x l o 5  N / m 2  (*15 psi) .  

Adjust load volumes such that V1 = 24.6 cm3  (1 .5  in3) 
and V 2  = 139'cm3 (8.5 in3). 

( e )  

( f )  

(g) 

(h) Repeat ( f )  ~ 

I 
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4.3.4 Hvsteresis and Svmmetrv 

The differential output p re s su re  w a s  recorded as a function 
of the differential input pressure  on an  X - Y  plotter as the input signal 
varied slowly f r o m  plus to minus and back to plus rated input signal. 

De tailed P r oc edu re 

(a) Connect input and output differential p ressure  
t ransducers  to the X-Y plotter.  The output 
differential pressure is connected to the Y axis 
input with a sensitivity of 10 psi/ inch. 
differential pressure is connected to the X axis 
input wi th  a sensitivity of 5 psi/ inch. 

Vary the input signal f r o m  plus to minus rated 
input s igna l  by means of a 0.01 cps tr iangular 
wave input signal. Plot one complete cycle. 

The input 

(b)  

4.3.5 Input P r e s s u r e  and Flow Versus Diffe rential  
Output P r e s s u r e  

The control input pressures  and flows and output p re s su res  
w e r e  recorded a t  various input signal levels with closed load thrott le.  

Detailed Procedure 

(a )  

( b )  

Set up equipment a s  shown in Figure 4-2. 

Record input pressures  PCA and PCB, output 
p re s su res  P 
Q 

( 0 ,  * 10, *25, *40 and & 5  psi) .  

and P2, and input flows QCA and 
5 1 

a t  output differential p re s su res  of 0, *1.03 x 10 
N E 2 ,  *2.06 x l o 5  N / m 2 ,  and * 3.1 x 10 5 N / m  2 

4.3 .6  Input Admittance 

The input admittance of the valve w a s  established by 
recording the control input pressures  and flows and the load flow f o r  
various throttle openings with a constant input signal. 

Detailed Procedure 

(a)  Close load throttle. Set P1 - P2 = 1.52 x l o 5  
N / m 2  (22 psi) .  

4-6 



(b)  Record input p re s su res  P and PCB and input CA 
flows QCA, QCB and QL. 

( c )  Open load throttle wide open. Repeat (b) .  

(d) Close load throttle such that Q, equals half of 
QL recorded in  ( c ) .  Repeat ( b ) .  

Close load throttle. Set P1 - P 2  = 3 . 1  x l o 5  N / m 2  
( 4 5  psi) .  Repeat (b).  

(e )  

( f )  Open load throttle wide open. Repeat (b) .  

(g)  Close load throttle such that QL equals half of 
QL recorded in ( f ) .  Repeat (b). 

4.3.7 Output Flow Versus Differential Output P r e s s u r e  

The differential output pressure ,  load flow and supply flow 
were  recorded with various settings of the load throttle with constant 
input s ignal. 

Detailed Procedure 

(a)  Record differential output p re s su re  (P1 - Pz) and 
flows QL a d  Q s ~  viith 100 percent rated input signal 
and with various settings of the load throttle f r o m  
closed to open. 
10 N / m 2  ( 5  psi)  differential output p re s su re .  

Repeat with reversed output flow. 

Repeat (a )  and (b)  with input s e t  such that closed 
load throttle differential p re s su re  equals 0.69 x l o 5  
and 1.38 x l o 5  N / m 2  (10 and 20 psi). 

Take readings a t  intervals of 0.34 x 
5 

(b) 

( c )  

4.4 ACCEPTANCE TEST RESULTS 

4.4.1 Summary and Discussion of Results 

The servovalve t e s t  and performance is compared with the 
specified requirements in Table 4 -  1. 
or exceeded specified requirements in a majority of the i tems compared. 
Measured performance did not meet  specifications in five cases ,  namely, 

The measured performance met  



quiescent supply flow, input signal power, flow recovery, output stability, 
and linearity. These cases  a r e  discussed below. 

The quiescent supply flow, input signal power, and flow 
recovery can be improved by merely optimizing the s ize  of pilot and 
power stages.  Both the pilot stage and power stage a re  slightly oversize,  
and the quiescent supply flow, flow recovery,  and power input performance 
would more  closely match the requirements if the valve were s ized more 
exactly. The rated no-load output flow is 0.0131 Kg/sec (0.029 pps) which 

Table 4-1 - Comparison of Measured Performance of the Fluid 
Interaction Se rvovalve with Specified Requirements 

Item * 
3. Supply Pressure 

4. 1 h d  

5. 2 Input Signal Pressure 
5. 3 Input Signal Bias 
5. 4 Input Signal Pmrer 
5. 5 Input Admittance 

6.  Quiescent Supply Flow 

7. Rated No-Load Output 
Flow 

8. Flow Recovery 

9. Pressure Recovery 

10. Output Presmure Bias 

11. Differential Input Signal 
Power Change for Output 
Pres8ure Change of from 

5 5 
to 0.69 x 10 

N/m2 (-10 to t10 psi) 
-0.69 x 10 

12. Linearity 

13. Output Flow VU. Differential 
Output Preaaure 

14. Output Stability 

15. Transient Response 

16. Symmstry 

17. Threshold 

18. Hysteresis 

+See Appendix A 

Soecified 

5 2  

< 3 3  

5.16 x 10 Nlm g a i r  (75 poig) 

Vc - V = 115 c m  (7 in.) 

3 3 V t V D =  164 cm ( l o i n . )  

D 

C 

5 2  
5 2  2.75 x 10 Nlm g max (40 psig) 

1.38 x 10 Nlm g max (20 psig) 
30 watts max. 
10% max. 

0.0204 Kg/sec max (0.045 pps) 

0.0113 Kglaec (0 .025 pps) 

0.55 rnin 

3.1 x 10 N/m min (45 psi) 

Not Specified 

5 2  

5 watt. m a x  

Gain mrx 
Gain min < 3  

P 

5 2  0.034 x 10 N/m max (0.5 psi) 

0.25 sec 

y max - y rnin <0.2 y max 

0.5% max 

3% max 

Measured 

5 2  5.16 x 10 

V - V 2115cm (7 in . )  

3 3 

N/m g a i r  (75 peig) 

3 3  
C D  

V t V D =  164cm ( l o i n . )  

1.72 x lo5 N/m2g (25 psig) 
1.17 x 10 N/m g (17 p8ig) 
55 watt. 
2% 

C 

5 2  

0.030 Kg/sec (0.067) 

0.0131 Kglsec (0.029 pps) 

0.44 
5 2  3.1 x 10 N/m (45 psi) 

5 2  1.24 x 10 N/m (18 poig) 

5 watts 

15 

5 2  0.27 x 10 N/m (4 psi) 

0.10 scc 

y max - y min = 0 . 0 2 ~  max 

0.5% 

3% 
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is 16 p e r c e n t  h igher  than the requi red  0.0113 K g / s e c  (0.025 pps) .  Thus 
both the  power s t age  and pilot s tage could be made  smaller and th i s  would 
d e c r e a s e  the quiescent  supply flow. F u r t h e r m o r e  the pilot s t a g e  was  o v e r -  
s i z e d  about  15  p e r c e n t  for the p re sen t  power s t age .  Dec reas ing  both the 
pilot s t age  and power  s t age  t o  the op t imum s i z e  would r e su l t  in a d e c r e a s e  
in the quiescent  supply flow t o  0.0245 K g / s e c  (0.054 pps) and an  i n c r e a s e  
in  the  flow r e c o v e r y  to 0.49. 
would also d e c r e a s e  f r o m  55 watts t o  about  46 wat t s .  

The m a x i m u m  to ta l  input con t ro l  power  

The non- l inear i ty  of the valve is mainly caused  by the non- 
l i n e a r  flow gain c h a r a c t e r i s t i c s  of the  pi lot  s t a g e  vo r t ex  valves .  The 
vo r t ex  va lves  r e q u i r e  a cons iderable  amoun t  of con t ro l  flow before they 
begin to t u r n  down o r  shut  off apprec iab ly .  The vor tex  valve ex i t  o r i f i c e s  
a re  s l ight ly  o v e r s i z e  s o  that  dec reas ing  the ex i t  o r i f i ce s  d i a m e t e r s  would 
he lp  the  l i nea r i ty .  The vo r t ex  valves should a l s o  be  designed with more 
l i n e a r  flow gain c h a r a c t e r i s t i c s .  

The s tab i l i ty  of the valve can be improved  by d e c r e a s i n g  the 
input  con t ro l  p r e s s u r e  b ias .  
decreased to about 0.103 t o  0 . 1 3 8 ~  10 N / m 2  (1.5 t o  2 psi) by th i s  means. 
However ,  this modif icat ion r e s u l t s  i n  a more nonl inear  differential out- 
put  v e r s u s  d i f fe ren t ia l  input p r e s s u r e  ga in  cu rve .  
u m e  in the supply line between the p r e s s u r e  dropping orifice and the 
power  s tage  vo r t ex  a m p l i f i e r s  would probably  a l s o  improve  the s tab i l i ty .  

The m a x i m u m  peak t o  peak r ipp le  can  be 
5 

Decreas ing  the vol-  

4.4.2 T e s t  P e r f o r m a n c e  Data  

The output flow v e r s u s  d i f fe ren t ia l  output p r e s s u r e  i s  shown 
in F i g u r e  4-5. From th is  f igure it is s e e n  tha t  the max imum p r e s s u r e  
d i f f e ren t i a l s  with c losed  load throt t le  w e r e  t3 .10  x l o 5  and -3.17 x l o 5  
N / m 2  ( t 4 5  and -46 ps i ) .  With wide open load th ro t t l e  the max imum 
output flows w e r e  0.0137 and - 0.0125 K g / s e c  ( t0 .0303  and -0.0277 pps). 
The supply flow rema ined  a t  0.030 K g / s e c  (0.067 pps)  du r ing  this  test 
u n d e r  all input and load th ro t t l e  condi t ions.  

The con t ro l  input power for e a c h  input l ine  i re rsus  d i f f e r -  
en t i a l  output p r e s s u r e  i s  shown in F i g u r e  4-6.  
p r e s s u r e  v e r s u s  d i f fe ren t ia l  control  input power is shown in F i g u r e  4-7 .  
The  r a t i o  between max imum and m i n i m u m  gain is 15. 
not  quite p a s s  through the or igin and i s  somewhat  a s y m m e t r i c a l  because  
of s l igh t  o r i f i ce  s i z e  d i f fe rences  between one half of the valve and the  
o t h e r .  The shape  of the c u r v e  can be ad jus ted  somewhat  by changing the 
con t ro l  input p r e s s u r e  b ias  level.  A l ower  con t ro l  input p r e s s u r e  b i a s  

The d i f fe ren t ia l  output 

The c u r v e  d o e s  
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PcA - PcB =-LO X lo5 N h 2  (-15 PSI) 

DIFFERENTIAL OUTPUT 
PRESSURE (PSI) 

PcA - P,-B ~0.21 X loS N h 2  

FL-4 

Figure  4 -5  - Servovalve Output Flow vs  Differential Output P r e s s u r e  

DIFFERENTIAL WTPUT PRESSURE (PSI) 

Figure 4-6  - Servovalve Control Input Power 
v s  Differential Output P r e s s u r e  
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level decreases  the gain in the center portion of the curve but increases  
the asymmetry  near  the ends of the curve.  
p re s su re  versus  differential control p re s su re  is shown in Figure 4-8. 
The output p re s su re  versus  control p re s su re  curve is s imi la r  in shape 
to the output p re s su re  versus  control power curve.  

The differential output 

Representative stability data is shown in  Figure 4-9. 
output differential p re s su re  does not have a regular oscillation but 
ra ther  seems to have a random variation about a given average d i f fe r -  

(4 psi)  was found f r o m  data taken with various inputs and combinations 
of load volumes. 

The 

entia1 pressure .  A maximum peak to peak variation of 0.27 x 10 5 N / m  2 

4 p 5 E C  

100% RATED INPUT SIGNAL 

QUIESCENT INPUT SIGNAL 

Figure 4-9 - Servovalve Output Differential Pressure Stability 
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The transient response is shown in  Figure 4-10. The input 
p re s su re  was  not a t rue step because of the limited transient response 
of the input electropneumatic servovalve. However, the output p re s su re  
followed the input pressure  very closely, and the output p re s su re  settled 
within 0.069 x l o 5  N / m 2  ( 1  psi) of the final differential output p re s su re  
in a time period of about 0.1 second, which is well under the maximum 
specified value of 0.25 seconds. 

The threshold data is shown in F igure  4-11. The increment 
of differential input signal power required to  produce a change in output 
was less than 0.5 percent of the difference in the differential input signal 
power between zero and rated input signal. 
servovalve is probably lower than this but the spool of the input e lectro-  
pneumatic servovalve stopped moving fo r  smaller inputs than that shown 
in the data. 

The threshold of the pneumatic 
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TOP: INPUT DIFFERENTIAL PRESSURE 
BOTTOM: OUT PUT DIF F ER ENT IA L PRESSUR E 

Figure 4-10 - Servovalve Transient Response 

~ 

TOP: INPUT DIFFERENTIAL PRESSURE 
BOTTOM: OUTPUT DIFFERENTIAL PRESSURE 

Figure 4 -11  - Servovalve Threshold 
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SECTION 5 

CONCLUSIONS AND RECOMMENDATIONS 

The resul ts  obtained in this program establish the feasibility of 
implementing practical  fluid interaction servovalves. Such servovalves 
offer important advantages in reliability and maintenance. 

The flow recovery of the fluid interaction servovalve is comparab le 
to that of the conventional flapper-nozzle valve. 
note that the level of the input control p re s su re  is l e s s  than the supply 
p re s su re  and the output pressure differential generated by the servovalve. 
Hence the servovalve can be controlled by a fluid interaction device 
having the same ( o r  lower) supply p re s su re  as the servovalve. 

It is a lso significant to 

It is recommended that additional effort be ca r r i ed  out to  achieve 
improvements in l inearity and stability. Better s ize  matching should 
be achieved between the pilot and power stages to increase flow recovery. 
Considering the fluid interaction servovalve's  inherent capabilities f o r  
operating in severe  environments, it is fur ther  recommended that a 
model be designed specifically f o r  and tested in severe  environments. 
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APPENDIX A 

DESIGN SPECIFICATIONS FOR FLUID INTERACTION 
PNEUMATLC SERVOVALVE 

1. SCOPE 

1.1 This  specification covers  a valve to be designed to meet  
the requirements of NASA Contract Number NAS3-5212 
entitled "Contract for  Design, Fabricat ion and Tes t  of a 
Fluid Interaction Servovalve .If 

2 .  DESCRIPTION OF VALVE 

2.1 See block diagram Figure  A-1. The input signal is a 
d'ifferential (A minus B) pneumatic signal. The two output 
ports  are arranged so that valve action in  one direction 
opens the supply port S to output port C and opens output 
port  D to re turn  port R .  Reverse valve action opens S 
to D and opens C to R. Since the servovalve operates  
without moving mechanical pa r t s ,  the flows through S ,  
R, C, and D cannot be completely shut off. 
therefore classified a s  a pneumatic -input, four  -way, open- 
center ,  fluid-interaction servovalve. 

The valve is 

SUPPLY P- 2620 

LOAD - VOLUME C 

INPUT SIGNAL OUTPUT (LOAD - THROTTLE VALVE 

LOAD - VOLUME 0 

RETURN 

Figure A-1 - Block Diagram of Servovalve and Load 
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3. S U P P L Y  PRESSURE & RETURN PRESSURE 
2 P 

P 

= 5.16 x l o 5  N / m  g ( 7 5  psig) d ry  air at room temperature  
S 

= 0 N / m  2 g at room temperature 
r 

4. SPECIFIED LOAD 

4.1 Volume s 

3 3 V, t vd = 164 cm (10 in ) 

V c  min. = V min. = 24.6 c m  3 (1.5 in 3 ) 
d 

3 3 Vc max. = vd  Max. = 139 c m  (8.5 in ) 

4.2 Load Throttle 

Wide open throttle shall resul t  in a differential p re s su re  
ac ross  the throttle of less than 0.207 x l o 5  N/m2  ( 3  psi)  
for  0.0113 Kg/sec (0,025 pps) steady flow through the 
throttle orifice. 

4.3 Load Lines 

The inside diameter  of all l ines forming a par t  of the load 
shall be greater  than 0.76 c m  (0.3 inches). 

5. SPECIFIED INPUT SIGNAL 

5.1 Type 

Differential pneumatic signal (signal A minus signal B 
in Figure A-1) of d r y  air a t  room temperature.  

5.2 Maximum P r e s s u r e  

F o r  rated input-signal, each line shall be below 2.75 x 
l o5  N/m2g (40 psig). 

5.3 Quiescent Pres s u r e  

At ze ro  input-signal, the average of Pa and P b  shall be 
under 1.38 x l o 5  N/mZg (30 psig). 
average as the "pressure bias"  of the input signal. 

NASA defines th i s  



5.4 Maximum Power 

The power of an  input signal is  defined as the product of 
gage pressure  times volumetric flow. 
combined power of signals A and B in Figure A-1 shall be 
less than 30 watts. 
t imes 0.113. 

The minimum 

To get watts, multiply psig t imes in3/sec. 

5.5 Input Admittance 

Variation in admittance of each input due to load throttle 
changes shall be less than 10 percent of the maximum 
input admittance, for  the complete range of the load 
throttle f r o m  fu l l  closed to wide open. 

N o  specification is placed on input admittance a s  a function 
of input - signal e 

Admittance is defined as the mathematical derivative of 
input volumetric flow with respect t o  the absolute p re s su re  
in the input line. 

6 .  QUIESCENT SUPPLY FLOW 

The flow through line S shall be less than 0,0204 Kg/sec (0.045 pps) 
a t  zero  input signal. 
flow a t  rated input signal with wide open load throttle. 

It is desirable that this flow be less than the 

7. RATED NO-LOAD OUTPUT FLOW 

Output flow is defined a s  flow through the load throttle. 
put flow shall be 0.0113 Kg/sec (0.025 pps) for  the rated input 
signal. 

The out- 

This is therefore a l so  the definition of rated input signal. 

8. FLOW RECOVERY 

With wide open load throttle the ratio of output mass flow to supply 
mass flow shall be greater than 0.55 at rated input signal. Supply 
mass flow is defined to  include only line S in Figure A-1. 

9. PRESSURE RECOVERY 

The pressure  differential a c r o s s  the closed load throttle shall be 
a t  least  3.1 x l o 5  N / m 2  (45 ps i )  at  the rated input signal. 



10. QUIESCENT OUTPUT PRESSURE 

This i s  defined a s  the level of Pc and pd when Pc = Pd. 
quirements o r  preference. 
Bias ' I .  

No r e -  
NASA defines this as  "Output-pressure 

11. DIFFERENTIAL OUTPUT PRESSURE CHANGE PER INPUT 
POWER CHANGE 

With closed load throttle, the change in differential input signal 
power required to  change the differential output pressure  f r o m  
-0.69 x l o 5  to  t 0.69 x l o 5  N / m 2  (-10 to t10 ps i )  shall be l e s s  
than 5 watts. 

12. LINEARITY 

The ratio of maximum to minimum pressure  gain for  a l l  values of 
the input signal shall be l e s s  than three (3). "Pressure  gain" is 
defined a s  the mathematical derivative of the differential output 
pressure  with respect to the differential input signal power during 
steady operating conditions with closed load throttle. 

13. OUTPUT-FLOW VS. DIFFERENTIAL OUTPUT-PRESSURE 

The output m a s s  flow shall be equal to  o r  greater  than 
- 

P 
Q 0 1 l -P 

0 
L -I 

where the quantity Qo is a constant equal to the output mass flow 
f o r  a given input signal with wide open load throttle; Po is a 
constant and equal to  the differential output pressure  f o r  the given 
input signal with closed load throttle; and P is a variable t e r m  
equal to the differential output p re s su re  f o r  a given input signal 
and is a function of load throttle setting. 

14. OUTPUT STABILITY 

Pead-to-peak r ip  le with closed load throttle shall be l e s s  than 
0.034 x 10 
signal of the differential output pressure  with a ll(O.05S t 1) 
f i l ter ,  fo r  load volumes of Vc minus V 
( - 7  and +7 cubic inches) and for  a l l  values of input signal. 

5 f N / m  (0.5 ps i )  measured a f te r  filtering an  electr ical  
2 

between -11-5 and +115 cm3 d 
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15. TRANSIENT RESPONSE 

With closed load throttle and equal load volumes (Vc = Vd = 81.9 
cm3 = 5 in3), a step input signal for  a 0.69 x l o 5  N / m 2  (10 psi)  
change in differential output pressure  shall resul t  in settling the 
output within 0.069 x l o 5  N / m 2  (1 ps i )  of the final differential 
output p re s su re  in a time period of l e s s  than 0.25 seconds. 

16. SYMMETRY 

Let y denote the absolute value of the differential input signal 
power with closed load throttle. 
and +45 psi  differential output p re s su res  shall be l e s s  than 20 
percent of the la rger  af the two values of Y. 

Then the difference in Y fo r  -45 

17. THRESHOLD 

The increment of differential input signal power required to 
produce a change in output shall be l e s s  than 0.5 percent of the 
difference in the differential input signal power between z e r o  and 
rated input signal. 

18. HYSTERESIS 

The difference in the differential input signal power required to  
produce the same output during a single input cycle shall be l e s s  
than 3 percent of the difference in the differential input signal 
power between ze ro  and rated input signal. 

19. MATERIAL 

Not specified. 

20. DIMENSIONS 

Not specified. 
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